
Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

INVESTIGATING ENVIRONMENTAL DATA WITH MICRO:BITS

According to the research of Professor Stephen Heppell:

‘A poor physical environment hurts learning.’

Source: www.learnometer.net

To be more specific, poor light levels, the wrong temperatures,

inappropriate sound volumes and rhythms, humidity, air

pollution, carbon dioxide (CO2) and air pressure can all impair

learning. On their own, each of these factors can affect a

student’s ability to learn. In combination, current research is

expected to show that learning outcomes are even worse.

So, what can you do about it? This knowledge provides a

great opportunity for students to participate in some

authentic transdisciplinary activities focused on Technologies,

Science and Mathematics to measure environmental factors

and improve the spaces in which they learn. ‘If we can optimise

that environment students learn more effectively and it also

encourages them to become reflective learners, which

improves their learning further.’

Source: www.learnometer.net

Some of these activities could be done using mobile phone

apps and devices such as the Learnometer (Figures 1 and 2).

Alternatively, your students could measure some of these

things for themselves by creating digital solutions (such as a

micro:bit with MonkMakes Sensor Board as shown in

Figure 3) – a powerful, authentic learning project. See tutorial

page 2.

The Learnometer

Partners of Stephen Heppell have produced the ‘Learnometer’

– a device which sits happily in your classroom and measures

all the physical factors listed earlier. Both versions of the device

(Figures 1 and 2) display readouts of the physical environment

and can store data in the cloud for later use. For more

information about these devices see

https://gratnellslearnometer.com

Figure 1: Early model
Learnometer

Figure 2: Learnometer

Figure 3: A micro:bit
with MonkMakes
Sensor Board

http://www.learnometer.net/
http://www.learnometer.net/
https://gratnellslearnometer.com/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

2

TUTORIAL

This tutorial shows the coding needed for digital solutions to some of the many

environmental issues mentioned in the introduction. They can be created using

pseudocode or English, visual programming and general-purpose programming.

It is organised into parts as follows:

Part A: Measuring light level – Years 5–6, Years 7–8

Part B: Measuring temperature – Years 5–6, Years 7–8

Part C: Measuring sound level – Years 5–6 or 7–8

Part D: Extension activities (optional).

Context: environmental factors affecting learning

Challenge: Create a digital device that can measure and display one or more of the

following environmental factors in the classroom:

• light levels

• temperature

• sound levels.

Optional (requires extra sensors)

• CO2 levels

• air pressure

Materials list (Figure 4):

1 x micro:bit

1 x micro:bit power supply

1 x micro:bit USB connector (not shown)

1 x MonkMakes Sensor Board

10 x alligator leads

Figure 4: L–R: micro:bit, buzzer, alligator clips,

MonkMakes Sensor Board, speaker

1 x buzzer or speaker for micro:bit

https://makecode.microbit.org website or Mu editor for MicroPython download site:

https://codewith.mu/en/download

Suggested introductory activity

Use the ACARA computational thinking poster as a stimulus to identify the aspects of

computational thinking involved in this activity. See

https://www.australiancurriculum.edu.au/media/5013/computational-thinking_poster_v3.pdf

https://makecode.microbit.org/
https://codewith.mu/en/download
https://www.australiancurriculum.edu.au/media/5013/computational-thinking_poster_v3.pdf

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

3

Part A: Measuring light level

Intended cohort: Years 5–6

Context: Poor lighting is a significant barrier to learning. Recent research (Barrett et al.

2015) shows that good lighting significantly influences reading, vocabulary and science test

scores. Above 500 lux is acceptable but above 1,000 lux is better.

Challenge: Create a light meter with your students. To do this we will first need a micro:bit

and a clear idea of what we want it to do.

Algorithm: Expressed as a simple sequence of steps

What is the sequence of steps needed to achieve this digital solution?

• Have the micro:bit report on the light level.

• Compare that light level to the lux light level indicated by an app

on a smart phone.

• Program the micro:bit to convert its reported light level to

something similar to the lux readout of the app; that is, we need

to code the micro:bit to reflect the true temperature of the room.
• When the user presses button A the calibrated lux level is shown.

Figure 5

We will use the Microsoft MakeCode website www.makecode.microbit.org to create this in

visual programming. The code to get a light level can be as simple as that shown in Figure 5.

However, we want to do a few things with the light level value, so we will:

1. store it in a variable (see glossary and useful links on page 23 of Assessment task)
2. apply a formula to convert the level to something simple that says if it is too dark or at an

‘OK’ lux level (‘lux’ may need to be explained before you proceed, depending on

students’ age, knowledge and ability – see glossary on page 23 of assessment task)
3. create a table (such as the one shown in Table 1) with micro:bit reported light levels and

lux readings from a phone app placed next to each other. This way these values can be

compared easily. For this activity we don’t need to go into too much depth or accuracy.

Table 1: micro:bit and phone app lux values on a scale of healthy light*

Micro:bit value Phone app lux value Healthy light?

12 41 Too dark

17 57 Too dark

35 190 Too dark

44 230 Too dark

53 307 Still too dark

56 345 Still too dark

84 429 Still too dark

88 471 Still too dark

102 592 Light level OK (boundary level)

224 2017 Light level OK

255 5000 Light level OK

* Above 500 lux is acceptable but above 1,000 lux is better.

http://www.makecode.microbit.org/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

4

The data in Table 1 has been grouped in this way:

• Dark blue – the lux values are around 3–5 times the micro:bit value (too dark)

• Mid blue – the lux values are around 6 times the micro:bit value (still too dark)

• Light blue – the boundary level – at around 100 indicates a lux value of about 500 (light

level is OK)
• White – the lux values are around 10 times or more the micro:bit value (light level is OK).

So, using micro:bit values, 88 is becoming a reasonable light level, 102 is a reasonable light

level and 224 is desirable.

Algorithms: Expressed in pseudocode or English

How could these steps be expressed in pseudocode?

Coding the micro:bit using visual programming

Students can use the www.makecode.microbit.org website to create the visual program as

shown in Figure 6. This can then be tested on screen with the emulator (virtual micro:bit) and

finally downloaded to a physical micro:bit for testing.

Figure 6

Get the light level

If the light level is below 100

Then it’s too dark

Else

The light level is fine

http://www.makecode.microbit.org/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

5

Part A: Measuring light level

Intended cohort: Years 7–8

Context: Poor lighting is a significant barrier to learning. Recent research (Barrett et al.

2015) shows that good lighting significantly influences reading, vocabulary and science test

scores. Above 500 lux is reasonable but above 1,000 lux is desirable.

Challenge: Create a light meter with your students.

This activity provides a great opportunity to discuss why calibration of a device is important;

that is, how this will set up the micro:bit to report approximate lux values.

• Dark blue – the lux values are between 3 and 5 times the micro:bit value – we will use 4

• Mid blue – the lux values are around 6 times the micro:bit value – we will use 6

• Light blue – the boundary level – at around 100 that indicates a lux value of about 500

• White – the lux values are 10 times or more the micro:bit value – we will use 10

Initially, you could take the students through the following visual programming exercise

to explore calibration using the in-built light sensor and Table 1.

Algorithms: Expressed in pseudocode or English

How could these steps be expressed in pseudocode?

Coding the micro:bit using visual programming

Students can use the www.makecode.microbit.org website to create the visual program

shown in Figure 7. This can then be tested on screen with the emulator (virtual micro:bit) and

finally downloaded to a physical micro:bit for testing.

Of course, students should be able to come up with their own tables and boundary values

after a bit of experimentation. Some of that experimentation is explained further on in this

tutorial.

At this point we will introduce an inexpensive external board called MonkMakes Sensor

Board (Figure 9) for students to explore ways to extend the micro:bit’s capabilities. This is

beneficial for students but optional. Therefore, you may choose to ignore the sensor board

code that follows and continue with just the micro:bit.

http://www.makecode.microbit.org/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

6

Figure 7

Coding the micro:bit using general-purpose programming (MicroPython)

Students can code in a general-purpose programming language such as Python. In this

tutorial we have used MicroPython, which can be used with Mu editor

www.codewith.mu/en/download, as shown in Figure 8.

Figure 8

https://codewith.mu/en/download

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

7

Adding an external sensor

For this tutorial we are using a MonkMakes Sensor Board. This board has 3 built-in

sensors which we will be using: a thermometer, a light sensor and a sound sensor. We will

be combining code using these sensors, and explain why along the way, so that students

(and you) get a good understanding of what is going on.

Remember our aim is to create environmental monitors for the classroom to help ensure an

optimal learning space. Introducing students to external sensors is a necessary part of this

whole exercise.

Connecting the micro:bit and the sensor board

The MonkMakes Sensor Board must connect to the

micro:bit. The diagram at Figure 9 shows how this is

done using alligator clips that connect to the gold

teeth at the bottom of the micro:bit. When students

do this, remind them to ensure that they have not put

the alligator clips over any adjacent teeth (the fine

vertical lines between the labelled larger pins).

Once connected, the sensor board is powered via

the micro:bit (3V and GND) and for this example the

light sensor is connected to pin 2. The next step is to

code the micro:bit to display what the sensor is

reporting.

The initial values can be read using visual

programming as simple as the example in Figure

10, which has been created in MakeCode. This

code doesn’t mean much though if the equivalent

lux value of the environment isn’t known. We

created the following example of how students could

do this.

First, we used a lux meter (mobile phone app) to find

an area in a room that was about 500 lux. We then

put the sensor board in the same spot with the same

angle – we found the angle of the sensor can affect

Figure 9: A micro:bit (top) and
MonkMakes sensor board (bottom)

Figure 10

readings – so we placed it flat on the desk and made

sure our shadow was in the way. We did the same

for 1,000 lux. The readings provided boundary

values to inform our visual programming.

We used the code shown in Figure 10 (visual

programming) and collected the data shown in

Table 2. You could do this in MicroPython, general-

purpose programming language (Figure 11).

Students should collect the same data if they have

access to a smart phone and a relevant lux app.

Note: The red ‘analog read pin …’ block shown in

Figure 10 is located in Pins.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

8

Figure 11

Table 2: Indoor sensor board and lux values

Sensor board value Phone app lux value Healthy light?

< 17 < 500 Too dark

17 503 Light level OK

23 1067 Light level ideal

Algorithms: Expressed in pseudocode or English

How could these steps be expressed in pseudocode?

Our algorithmic thinking to convert this into an environmental monitor will be very similar to

what we have already used:

Coding the micro:bit using visual programming

The code using www.makecode.microbit.org website to carry out our algorithmic thinking is

shown in Figure 12.

Students may ask: “Why does it work when 7 is less than 17 but it is also less than 23?” The

answer is that the micro:bit goes through the code line by line. As soon as it finds a

comparison that is true (7 is less than 17) it doesn’t bother looking at any other parts of the

IF ELSE IF ELSE block.

Get the value from pin 2

Create a variable called level to store the value from pin 2

If level is below 17

Then show sad face and show level

Else if the level is below 23

Then show happy face and show level

Else

Show heart and show level

http://www.makecode.microbit.org/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

9

When students can successfully measure suitable

light levels in their classroom and a visual alert

warns them if the light is too low, we can move on

to measuring another factor that can affect

learning: temperature.

For Years 5–6 students we will just use the in-built

micro:bit temperature sensor. For Years 7–8

students, instead of using the in-built thermometer

in the micro:bit, we are going to use the

MonkMakes Sensor Board. Why? Well, basically

because it may prove more accurate and it

introduces students to a whole new world of

experimentation and control of their environment

that they cannot get just from the micro:bit.

Coding the micro:bit using general-
purpose programming (MicroPython)

Students can code in a general-purpose

programming language such as MicroPython,

which can be used with Mu editor

www.codewith.mu/en/download, as shown in

Figure 13.

Figure 12

Figure 13

https://codewith.mu/en/download

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

10

Part B: Measuring temperature

Intended cohort: Years 5–6

Context: Research by Graff Zivin et al. (2018) suggests that warmer classrooms (above

21 ºC) have a negative effect on learning and this becomes statistically significant above

26 ºC. Another study https://tinyurl.com/y8pzrdod confirms that students who experience

more hot days during the year perform worse on subsequent standardised exams.

Challenge: Create a digital thermometer with your students. For the younger students we

will just use the in-built micro:bit temperature sensor.

Algorithms: Expressed in English or pseudocode

How could these steps be expressed in pseudocode?

Coding the micro:bit using visual programming

Students can use the www.makecode.microbit.org website to

create the visual program shown in Figure 14.

We could add another readout to make the device more

informative. Underneath the tick and the cross you could add

2 lines saying to pause for a second and then show the

temperature.

This addition to the code is shown in Figure 15.

Possible extension

It is easy enough to get the micro:bit to display the

temperature, but wouldn’t it be great to have it sound an

alarm if the temperature gets too warm or too cold?

We will get to that with the approach for Years 7–8 or more

advanced students. You could do this with Years 5–6

students if you wish.

Figure 14

Figure 15

Get the temperature level

If the temperature level is below 26 degrees Celsius

Then that’s fine

Else

The temperature is too high

https://www.usatoday.com/story/opinion/2019/08/15/heat-wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/
http://www.usatoday.com/story/opinion/2019/08/15/heat-wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/
http://www.makecode.microbit.org/

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

11

Part B: Measuring temperature

Intended cohort: Years 7–8

Context: Research by Graff Zivin et al. (2018) suggests that warmer classrooms (above

21 ºC) have a negative effect on learning and this becomes statistically significant above

26 ºC. Another study www.tinyurl.com/y9m3jbwx confirms that students who experience

more hot days during the year perform worse on subsequent standardised exams.

Challenge: Create a digital thermometer with your students.

Preparation: The micro:bit has a number of gold teeth, as you have already discovered. We

can use those teeth to attach to the temperature sensor on the sensor board.

At Figure 16 is a diagram of a sensor board attached to the

micro:bit showing it getting information just from the

temperature sensor. Notice that there are 2 other sensors: one

for sound and the other (which we have already used) for light.

An activity might be for your students to find out what is

more accurate – onboard temperature sensors on the

micro:bit or external sensors such as the MonkMakes

Sensor Board sensing the same conditions.

NB: If you don’t have a MonkMakes sensor (they are about

$15) then you could code this just using the in-built

temperature sensor.

The reason we are introducing this sensor board now is that

it will be needed for sound levels later on, and it avoids a

MakeCode issue we discovered when combining the

onboard light sensor and the sensor board temperature

sensor into one piece of code. You can see the issue in this

short video: https://youtu.be/mqbrFcdi0Es (4 min).

This time, the temperature level is going to be coming from

an external sensor via pin 1. At this stage, tell students that

there are 3 pins we can use to collect data from external

sensors. On the micro:bit they are labelled 0, 1 and 2 and are

at the bottom on the gold ‘teeth’. There are many more pins,

but students don’t need to know about those at this point. To

keep it simple at this stage, disconnect the light sensor from

the light level activity if it isn’t already. We will combine the 2

at the end of this section. To get the temperature we need to

do a bit of mathematics. First let’s work out why.

Attach the sensor board to the

micro:bit just like in the diagram in

Figure 16. Use the visual

programming code in Figure 17 or the

MicroPython general-purpose

programming in Figure 18 to get a

reading from pin 1.

Figure 17

Figure 16

https://www.usatoday.com/story/opinion/2019/08/15/heat-wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/
http://www.usatoday.com/story/opinion/2019/08/15/heat-wave-students-need-air-conditioning-close-achievement-gap-column/1996394001/
https://youtu.be/mqbrFcdi0Es

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

12

Figure 18

The number that is shown is an analog number between 0 and 1023 which reflects how

much electricity is going through the sensor.

When we ran the code the numbers 465 and 466 came up. These are a measurement of

electrical (kinetic) energy. We need to work out how to convert those numbers into

degrees Celsius.

So students can see the value the sensor board is returning, have them gently put their

finger on the temperature sensor: they should be able to see the reading increase.

You may want to explain that the values generated indicate a measurement (in volts) of how

much energy is able to pass through the sensor.

Managing and interpreting the sensor data

To convert the numbers that the sensor is reporting, we need to turn them into something

that makes much more sense than a measure of electrical (kinetic) energy.

There are 3 approaches we could take:

• Use a ‘black box’ approach that allows students to use a pre-built code block to display a

fairly accurate temperature. Students just apply the code block without understanding the

mathematics behind it.

• Collect some data and calibrate the micro:bit – the ‘calibration approach’.

• Apply the Steinhart – Hart equation to the data we are reading.

The first 2 approaches are described below. The Steinhart – Hart equation is beyond the

level of this tutorial but would have its place in Years 9–12.

https://www.ametherm.com/thermistor/ntc-thermistors-steinhart-and-hart-equation#%3A%7E%3Atext%3DThe%20Steinhart%20and%20Hart%20Equation%2Cthermistors%20and%20NTC%20probe%20assemblies.%26text%3DKnowing%20A%2C%20B%20and%20C%2CHart%20equation%20in%20two%20ways

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0
13

The black box approach

If you want your students to just get the readings from the sensor, which are then

automatically converted to an approximate temperature value:

1. Open www.makecode.microbit.org, click on ‘New Project’, then complete the Create a

Project box. Next click on Extensions (Figure 19) under Advanced (Figure 20).

2. Search for ‘Monk’ in the search bar (Figure 21) and choose the sensor extension that

comes up (Figure 22).

You will then have a new set of blocks called Sensor (Figure 23). The video at the following

link explains the process https://youtu.be/sx6OIfdg3sE (1 min).

Figure 22 Figure 23

With the temperature block (Figure 23) we can quickly get the temperature from the sensor

board. Again, our code will be based on the following algorithmic thinking expressed in

pseudocode.

Algorithms: Expressed in pseudocode

How could these steps be expressed in pseudocode?

Get the temperature level

If the temperature level is below 26 degrees Celsius

Then that’s fine, display a tick, then the temperature

Else

The temperature is too high – display a cross, then the temperature

Figure 19 Figure 21 Figure 20

http://www.makecode.microbit.org/
https://youtu.be/sx6OIfdg3sE

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0
14

Coding the micro:bit using visual programming

The code that we will use is not too dissimilar to

the code used for Years 5–6, except that we

are asking an external device to provide the

values (Figure 24).

Figure 24

The calibration approach

Why bother with this approach if the black box approach works? Well, this approach covers

a lot of the collection, analysis and representation of data key concepts in Digital

Technologies, as well as the specification, algorithms and implementation key concepts.

The black box approach does as well but not as explicitly nor to the same degree; however,

it does illustrate the concept of abstraction. The calibration approach basically explains the

formula in the black box approach (page 13), taking the ‘black box’ away so students

understand what is actually happening.

To complete this approach, the students need access to a digital thermometer. We picked

one up at a local supermarket for about $10.

The way for students to do this is to get 2 known different temperatures and the sensor

values for those same temperatures. We recorded an indoor temperature as well as an

outdoor temperature that was in the shade. Students could record a temperature first thing in

the morning and another around lunchtime (provided they were quite different readings).

Students then apply a fairly simple formula to convert the sensor value to a temperature

within the micro:bit code.

We will use a table to collect our data and apply our formula:

Celsius = (reading x C) – D (see Table 3)

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

15

This formula comes from MonkMakes and it provides a simple way to apply a formula that

does just about the same thing as the Steinhart – Hart equation, without all the difficult

mathematics.

The filled in data is shown in Table 3.

Table 3: Sample temperature data

Data collected Name we give it Value reported

Thermometer reading (current room temperature) t1 18

Sensor reading (current room temperature) r1 430

Thermometer reading (different temperature) t2 10

Sensor reading (different temperature) r2 330

Formula application

A = t1 – t2 A 18 –10 = 8

B = r1 – r2 B 430 – 330 = 100

C = A / B C 0.08

D = t2 – (C * r2) D 10 – (0.08 x 330)
10 – 26
= –16

So in our example, A = 8, B = 100, C = 0.08 and D = –16.

A is the difference between the 2 thermometer readings. B

is the difference between the 2 sensor readings.

C represents the voltage change per degree.

D is the second thermometer reading minus the change per degree multiplied by the second

sensor reading.

To get the temperature we use C and D as well as the voltage reading. Our final formula

based on our collected data is: Celsius = reading x 0.08 – 16.

So if the voltage is 427 we get a temperature of 18 degrees Celsius.

The final formula we used is for the readings taken for the conditions we were in. Your

reading values will of course be different from these. It is the process that the students go

through that is important. If you are using a different temperature sensor than the one used

in this tutorial, you may need to apply a different formula.

To make it simpler to refer to the temperature that is calculated by the formula we will create

a variable called ‘temp’ to store the calculated temperature and create the code (Figure 25).

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

16

Figure 25

We used the ‘round’ function, otherwise there would be many decimal places shown.

Students could experiment with and without the round block to see which is more user

friendly.

If students put the various blocks in the wrong spot, then the readings will be way off. The

easiest way to check is to make sure that the section of code between ‘round’ and ‘reading’

has a double border line. It is hard to see, so here it is magnified and indicated with an arrow

in Figure 26.

Figure 26

This video shows how to build the set temp block in the correct order:

https://youtu.be/nq1uu2490bk (2 min).

The sequence for the code is shown step by step in Figure 27.

https://youtu.be/nq1uu2490bk

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

17

Figure 27: Steps for building the set temp block in the correct order

The code using the calibration

method contains only 2

different lines to the black box

method (Figure 28).

Encourage students to try

working it out for themselves

first. Comparing the 2

methods might also lead to a

discussion related to the

Digital Technologies key

concept, abstraction; that is,

hiding unnecessary details.

Figure 28

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

18

Coding the micro:bit using general-purpose programming (MicroPython)

Students can code in a general-purpose programming language such as MicroPython, which

can be used with Mu editor www.codewith.mu/en/download, as shown in Figure 29.

Figure 29

Adding an alarm

Now that we can get the temperature, we

need to add an alarm that will beep if the

temperature gets too warm. This could be

added to both the Years 5–6 and Years

7–8 student projects.

To begin with we will use a simple

Keyestudio buzzer that we sourced from

the internet for a few dollars (Figure 30).

Notice that it has 3 pins:

– connects to GND

+ connects to 3V

Figure 30: Image source:
https://wiki.keyestudio.com/File:361-

10.png

S connects to a spare pin on
 the micro:bit.

https://codewith.mu/en/download

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

19

Figure 31

Next, we will connect this to the micro:bit and sensor board we have already set up (Figure

16). To do this, follow the diagram shown in Figure 31.

Note that the green signal lead (S) is connected to pin 0 on the micro:bit. We will need to

remember this in our coding. Connecting it to pin 0 was not by accident, as we will

discover shortly.

To get the alarm to work we just need to tell the micro:bit to send a signal out of pin 0 if our

boundary value (26 degrees, from the research above) is reached.

Algorithms: Expressed in pseudocode/English

How could these steps be expressed in pseudocode?

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

20

Coding the micro:bit using visual programming

After setting up the code shown in Figure 32, we

now have a micro:bit that can sense temperature

and alert us if it gets too high for conducive learning

to take place in the classroom.

If you are happy for the students to experiment with

some other tones or alarms then they could try

using some of the music blocks in MakeCode (like

the ‘dadadum’ melody, for example), instead of the

digital write pin 0 blocks.

An interesting thing for them to do then would be to

connect the buzzer to pin 2 instead, recode and see

if the melodies still play. This could lead to a

discussion about pin 0 having some different

properties compared with pin 2.

Following in Figure 35 is the extra code we need

added to the ‘black box’ code. If your students did

the calibration method, then they should be able to

work out where to place the necessary extra blocks.

Figure 32

Coding the micro:bit using general-purpose programming (MicroPython)

The MicroPython code is shown in Figure 33 and, as an alternative, with music that

plays when the temperature gets too high in Figure 34.

Figure 33

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

21

Figure 34

Note:

You may have the newer Version 2 micro:bits which have a built-in microphone and speaker. If

this is the case the external microphone and speaker are unnecessary. However, they still

represent a good exercise to have the students connecting external sensors and actuators.

Combining codes

If we combine our temperature code with the code that visually alerts us if the light is too low

then we have covered 2 conditions that research proves are important for optimal learning.

We will use the calibration code (including the alarm code) and combine it with the light level

code. Initially, our code looks like that shown in Figure 35.

This code is starting to get a bit complex and hard to read because it is getting too long and

doing 2 different things which take time to read through and can cause confusion.

It is also hard to understand because the second half refers to level, but what sort of level is

it? Is it light? Sound? Water? Air pressure? We will need a better variable name. Computer

programmers refer to this as intrinsic documentation and it is really important for readability

and maintainability. Maintainability refers to how easy it is for other programmers to make

necessary changes to your code.

Computer programmers often break code up into logical smaller blocks called procedures or

functions. Basically, these are self-contained pieces of code that can be called upon at any

time by other parts of a program.

In the next section we will break our code up into more logical chunks.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

22

Figure 35

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

23

Coding the micro:bit using general-purpose programming (MicroPython)

The MicroPython code is shown combining light and temperature using the micro:bit in

Figure 36 and with the MonkMakes Sensor Board in Figure 37.

Figure 36

Figure 37

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

24

Creating some functions

In Microsoft MakeCode, if you go into the advanced blocks at the bottom of the list of

blocks (below Math) you will see a block to Make a Function (Figure 38).

Figure 38

The video at this link https://youtu.be/LGaTYz022mk demonstrates the whole process (3 min).

Figure 39 shows the same code as previously seen in Figure 35, but broken up into 3 separate

pieces of code:

• a function to getTemperature

• a function to getLight

• a forever loop which cycles between the 2 with a one-second break in between.

Compare the 2 different ways to write the same code. Which one do you find easier to

understand and read? This could lead to a discussion about abstraction and hidden code,

code libraries etc.

Figure 39

https://youtu.be/LGaTYz022mk

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

25

Of course, for the temperature and light to both provide data to the micro:bit and for the

alarm to function we need to connect it all up together. Figure 40 is a diagram showing the

correct connections. Your students could probably work it out for themselves at this stage.

Figure 40

You could get your students to experiment to get the alarm to chirp longer than it does in the

code presented. Then again, to save sanity, maybe don’t tell them!

Note for Part C:

You may have the newer Version 2 micro:bits which have a built-in microphone and

speaker. If this is the case, the external microphone and speaker described in the next

section are unnecessary.

However, they still represent a great exercise in having the students connecting external

sensors and actuators.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

26

Part C: Measuring sound level

Intended cohort: Years 5–6 or 7–8

Context: Classroom sound signatures can affect how well students achieve (Picard and

Bradley 2001 www.ncbi.nlm.nih.gov/pubmed/11688542). Studies by James et al. (2012) and

Anderson (2001) show that ‘children from classrooms with poor acoustics have lower literacy

and numeracy skills, are less productive in the workforce, and tend to be in lower paid jobs

than those from classrooms with good acoustics’ (in Mealings 2016

www.tinyurl.com/y8dqypl2). Anything above about 72 decibels starts to get disruptive. Above

50 makes concentrating difficult.

Challenge: Create a sound monitor with your students.

Preparation: On the MonkMakes Sensor Board there is a third sensor (in addition to

temperature and light) which can detect sound. Unlike temperature and light, the micro:bit

does not have an in-built sound sensor. If students want to monitor their classroom for

suitable noise levels, some sort of microphone sensor which works with a micro:bit is

needed.

For this tutorial we will use the MonkMakes Sensor Board. What you may have noticed is

that the 0, 1, 2, 3V and GND pins have all been used on the micro:bit to get the temperature,

light and alarm operating (Figure 40).

There are breakout boards or edge connectors www.tinyurl.com/y9h4vjyf available for the

micro:bit which allow you to utilise all 21 pins, including all the little pins in between the larger

labelled pins just mentioned. We won’t use one of those here. Instead, we will just code

another micro:bit and connect it up to the sensor board as a standalone sensor.

If you have read the research findings at the start of this part, you will be aware that sounds

above 72 decibels are regarded as disruptive, although noise over 50 might be annoying if

you are trying to concentrate. We are going to use the sensor board to provide sound levels

for the micro:bit and tell it when the noise level is too high and to sound an alarm to alert the

students that the environment is no longer conducive to optimal learning. Here is how we will

do that.

Connecting the sound (microphone) sensor

Connect pin 0 to the S pin on the

buzzer. Next, connect the sound

sensor to pin 1 or pin 2. In

Figure 41 we have used pin 1.

Finally, we need to connect the

power connectors as we had

them before.

Figure 41

https://www.ncbi.nlm.nih.gov/pubmed/11688542
https://tinyurl.com/y8dqypl2
https://core-electronics.com.au/kitronik-edge-connector-breakout-board-for-bbc-micro-bit.html?utm_source=google_shopping&gclid=Cj0KCQjww_f2BRC-ARIsAP3zarGBhuyfcTdq31GgmDxw28HqXJqI37vMJtWdukI4KGbsgkdS8fXpoRMaAnKiEALw_wcB

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

27

Experimenting with the sound sensor

The sound sensor is connected to pin 1. It supplies

an analog signal between 0 and 3 V. The signal

swings above and below a midpoint of about 1.5 V.

Let’s code the micro:bit to show this.

We are going to graph the results that the micro:bit

receives from the sensor board.

The visual programming code to start on our noise

level journey is shown in Figure 42 and in

MicroPython in Figure 43.

Figure 43

You will notice that even when a space is really quiet,

about half of the LEDs light up. (On our simulator it

looks like the image shown at Figure 44.)

That is because a very quiet environment registers at

about 500 (which is about 1.5 volts). It appears as

though there is much greater noise when it is actually

really quiet.

NB: Noises that are greater than this register at above or

below the 1.5 volts. This is due to the way the sensor

works. To find out more about sinusoidal waves created

by sound pressure (not necessary to know this to do the

activity) see www.tinyurl.com/y8e9poa6.

Figure 44

To resolve this issue we can do some

mathematics. Since silence starts at

around 500, if we take about 500 away

then silence will then be represented by

about 0 or 1. We are actually going to

subtract 511.

Figure 45

Figure 42

http://www.tinyurl.com/y8e9poa6

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

28

You may remember that the analog

signals being reported by the sensor

board fall between 0 and 1023. If we

take 511 from the highest value then

that is about half. Have the students try

the code shown in Figure 45 to see if

they can get the top 2 lines of the

LEDs to light up at all. Of course, they

won’t be able to because if we are

taking 511 from any reading, then the top reading can only be 512 (511 + 512 = 1023). We

have told the graph to plot to 1023, which it won’t get to.

To get the graph to be more accurate, we need to tell it to make 512 the highest value to

expect. The finished graph code is shown in Figure 46. Using this code, students should be

able to get all the rows of LEDs to light up, even momentarily. This video shows this whole

process https://youtu.be/EidbZE5NK8Y (4 min).

The graph shown in Figure 47 shows what happens when sounds are detected. Notice that

the readings oscillate above and below the 1.5 V level.

Figure 47. Source: www.monkmakes.com/downloads/instructions_mb_sensor.pdf

Figure 46

https://youtu.be/EidbZE5NK8Y
http://www.monkmakes.com/downloads/instructions_mb_sensor.pdf

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

29

Capturing the sound level data

We are going to stray for a few minutes to explore a really powerful feature of MakeCode for

micro:bits. When we are watching the LEDs light up, they are being controlled by incoming

data from the sensor board sound level sensor. There is a lot of data coming in. Wouldn’t it

be great if we could capture that data for later use or analysis? Well, we can.

To do this, the micro:bit needs to be paired to the computer that is being used to program it.

If you haven’t discovered this yet, it is the easiest way to download code to the micro:bit.

There are 2 things you will need for a PC, both of which are worth the effort:

• the latest Chrome browser (at least version 65) or the latest Microsoft Edge browser (at

least version 83 or the beta version)
• firmware version 0249 or above installed on your micro:bits.

When you open the Microsoft micro:bit MakeCode editor and

open or start a new program you will see a gear symbol near

the top right (Figure 48).

Figure 48

When you click the gear icon an option should come up

saying ‘Pair device’ (Figure 49). If you cannot see that

option, you will need to upgrade your browser.

If you have a class set of micro:bits it is best to upgrade them

all at once. Just download the firmware file and follow the

instructions for each micro:bit. After the initial download it

takes only 30 seconds per micro:bit to get them all ready.

Of course, getting at least version 65 of Chrome may need

negotiation with whomever looks after your computer

network.

This video explains the process of upgrading your micro:bits

if they cannot seem to pair, and then going through the

process of pairing https://youtu.be/r1VgzQV8to0 (5 min).

This is worth doing with your personal or home computer

just to see the possibilities, even if your school computers’

software may need to be upgraded for it to work for

the students.

Make sure the micro:bit and your computer are connected by

a USB cable. When you click on Pair device (big green

button in pop-up), a window comes up and it should have the

name of the micro:bit in it. Click on the name and then

click connect.

Now when you want to download some code, just click the

purple download button and it automatically goes straight to

the micro:bit. Better still, when using the plot bar graph block

of code, a new button will appear called Show console

Device (Figure 50).

Figure 49

https://youtu.be/r1VgzQV8to0

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

30

Using Show console Device

Make sure that your micro:bit is paired with your computer.

Download the latest code we have written (Figure 46). You

will see more LEDs lighting up on the micro:bit as the sound

level increases.

If you click on the Show console Device button under the

emulator a graph will appear which is showing in real time

what the sensor board is picking up.

Figure 51 shows an example using the initial code.

Figure 50

Figure 51

Figure 52 shows what it picked up with the latest code.

Notice the almost flatline quiet signal on the top graph (Figure

51) is at around 500 (look where 827 and 17 are) and it is

around 0 on the bottom graph (Figure 52).

If we pause the real-time graphing we can then download

(Figure 53) the data as a CSV file. We can then analyse

that data in a spreadsheet.

Take a look at this video to see an example of what you can
do with the data https://youtu.be/avL9GUGZpzg (7 min).

Students could also add a plot bar graph function to the

temperature and the light codes as well, and there would be

a wealth of data to analyse.

Figure 52

Figure 53

https://youtu.be/avL9GUGZpzg

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

31

We suggest sampling only once every minute to reduce the amount of data that students

have to deal with. Of course, it would depend on what you were collecting the data for.

There is a lot that can be done with this graphing and data capture ability. One idea is

micro:bits sending data via their radio functions to a central micro:bit connected to a

computer which collects all that data from various parts of the classroom as well as outside.

Getting the sound sensor to alert when it is too loud

The last thing we will do with this sensor is to get

it to play an alarm and give a visual cue when the

sound level gets too loud.

Again, we have to load the MonkMakes

extension. The process for doing this is described

on page 13. Every time we start a new program

with the MonkMakes Sensor Board we need to

get the extension blocks again.

Once we add the sensor board blocks to MakeCode
Figure 54 we can use the new sound level block to help us

collect the sound. It will report a sound level between

0 and 100. We tested this using the code shown in

Figure 54 and also in MicroPython in Figure 55.

Figure 55

Approximate levels captured just through observation are shown in Table 4.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

32

Table 4: Sample sound level data

Sample Our perception Sensor average level App decibels

A Soft 14 40

B Medium 23 63

C Starting to get loud 34 73

D Quite loud 48 around 78

For classroom ownership, you could lead your class through a discussion of what are

conducive sound levels and measure them with a mobile app and the sensor board attached

to the micro:bit.

Perhaps get the students to raise their hand when they think the classroom level is great for

learning, getting annoying and really annoying. Students could capture readings at these

times and use that data to inform their coding.

That is what we will do with the data we captured in Table 4. We will use a sensor average

level value of about halfway between soft and medium (so about 17) to be the boundary for

conducive levels, and a value between medium and starting to get loud (about 28) to

indicate somewhat annoying noise. Anything between 29 and 36 becomes quite annoying

noise and above 36 will trigger the alarm for sound that is disruptive to learning levels. These

are approximations and your class may come up with a different scale.

Algorithms: Expressed in pseudocode/English

How could these steps be expressed in pseudocode?

Just note that now that we have our data we don’t need the ‘plot bar graph’ block to allow the

console device to run so it won’t form part of our code.

You could change your code if you want the students to continue to be able to track the

sound levels in real time.

You may find you also need to change the code to better represent noise levels in your

classroom. The examples shown in this tutorial were not taken in a classroom environment.

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

33

Coding the micro:bit using visual programming

As code, the program appears as shown in Figure 56.

So now we have devices that can measure the

temperature, sound and light levels in a classroom and

alert the students and teacher when they get to a level

that is no longer conducive for effective learning.

Students can take ownership of their environment,

based on science, and create a positive atmosphere in

which to learn. This is really powerful as it gives the

students agency for their own learning.

Coding the micro:bit using general-purpose
programming (MicroPython)

The MicroPython code is shown in Figure 57.

Figure 57

Figure 56

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

34

Part D: Optional extension activities

As extension, you may like your students to attempt to measure carbon dioxide or air

pressure levels or to create a master monitoring device.

Carbon dioxide levels

Context: Carbon dioxide (CO2) levels play a major part in students’ abilities to learn. With as

little as 1,000 parts per million and likely lower still, CO2 induces sleepiness, poor

concentration, abnormal heart rates and even nausea, as expressed in an article about a

study from the Harvard School of Public Health www.tinyurl.com/yclw6kzu. Similarly, it

appears that air pollution has an enormous effect on learning. A study reported on in The

Guardian www.tinyurl.com/y92t7yz9 suggests that high levels of urban pollution have a

major impact on attainment, with some students dropping a whole year of progress over their

school lives.

Challenge: Measure CO2 and create an alarm when readings reach a certain level.

Air pressure

Context: Air pressure may play a role in affecting cognitive abilities. This is under research;

however, the common complaint of sinus headaches when air pressure changes will

obviously affect one’s ability to learn. Think about how your students behave on a windy day.

Challenge: Measure air pressure and create an alarm when readings reach a certain level.

Create a master monitoring device

You may want students to make a central computer which is monitoring all the sensors

covered in this tutorial.

Example optional extension activity

Carbon dioxide levels

To measure the carbon dioxide levels in a classroom you will need a sensor that will report

such levels. There are many sensors on the market and a number of them are quite

expensive. For this activity we settled on a mid-range sensor. We found the cheap ones

were very difficult to connect to and in some cases required soldering. We also found the

very expensive sensors were cost prohibitive. The parts needed are shown in Figure 58.

Figure 58

https://thinkprogress.org/exclusive-elevated-co2-levels-directly-affect-human-cognition-new-harvard-study-shows-2748e7378941/
https://tinyurl.com/y92t7yz9

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

35

OFFICIAL

We got ours from Sparkfun, the makers of the boards. All up it cost less than $100. Note that

we had the micro:bit already. There are other boards that you can also get to enhance the

use of the gator:bit. As its name suggests, you will also need some alligator clips to connect

up 2 of the boards.

Connecting the boards

The 3 boards are connected in the following way. The micro:bit slots into the plastic housing

on the gator:bit carrier board with the LEDs facing up. The smaller environment board

connects to the carrier board using 4 alligator wires. Look at Figure 59 and the description

that follows for details.

Basically, an alligator wire connects the

2 SDA pads and another connects the 2

SCL pads. An alligator wire connects

the 2 ground pads together and the final

wire connects the two 3v3 pads

together.

You could go in to the role of the SDA in

transferring data and the SCL in

transferring clock information if you so

wished.

Note how the micro:bit is inserted into

the plastic housing.

Loading the gator:bit extension

Once you have connected up the gator:bit carrier board and the environment board and

inserted the micro:bit you are ready to download the coding extension in Microsoft

Makecode and start collecting CO2 data. Make sure your micro:bit is still connected to the

gator carrier board and connect the micro:bit to your computer via the USB cable as usual.

Now open Microsoft Makecode. Choose a new project and call it something like ‘Carbon

Dioxide’. Pair your micro:bit to the computer by clicking on the gear icon and choosing pair.

Click the gear icon again and choose ‘extensions’. Look for gator:bit or gator-environment

and choose ‘gator-environment’ when it comes up.

This will load another set of blocks that you can use which talk directly to the gator

environment board attached to the gator carrier board and micro:bit. If you are having

trouble, watch this video which explains all these connections and extensions:

https://youtu.be/wM1ITc6LRYs (3.75 min).

Figure 59

https://youtu.be/wM1ITc6LRYs

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

36

OFFICIAL

Coding the micro:bit

To code the micro:bit follow the code below.

This code initialises the sensors and then reports the degrees in Celsius. You could get the

students to compare this value with the value reported using the in-built thermistor. In a

similar way, you can get other readings such as pressure, humidity and the CO2 level. You

can check if the CO2 is working correctly by breathing on the sensor and seeing if the value

increases. Students could use techniques like those previously described to set an alarm, to

create an alarm for if the CO2 level goes above 1,000, for example.

The code can get more complex. Below is an example of code which collects all the data

from the gator environment board and reports it using the in-built ‘Show console Device’

button, which also allows you to export the data as a CSV file for manipulation in a

spreadsheet.

To see this in action watch this final video: https://youtu.be/bK1oecfEZ70

https://youtu.be/bK1oecfEZ70

Developed by ACARA’s Digital Technologies in focus project

Australian Government Department of Education, Skills and Employment CC BY 4.0

37

OFFICIAL

Final things to remember

The eCO2 sensor on the gator environment board provides the user with an estimate of the

CO2 level. Sensors which are much more accurate cost a lot more money. This board is

useful as an entry-level sensor which will provide fairly accurate results which can then be

used to expand the students’ understanding of their learning environment.

When you first get the environment board it needs to be kept on for about 48 hours to ‘burn

it in’. To do this connect it all up, code it to report the CO2 level and leave it to run for a

couple of days. After this it should only take a few minutes for it to start reporting CO2

accurately (up to 20 minutes if it has been left for a very long time).

There are many other things you can do with this board and other sensors when using a

micro:bit. Students will often come up with great ideas once they are aware of what the

device can do. A way to start the conversation is to say something like: “If we had the

micro:bits last term, what sorts of things could we have done in our classroom?”

	INVESTIGATING ENVIRONMENTAL DATA WITH MICRO:BITS
	The Learnometer

	Part A: Measuring light level
	Algorithm: Expressed as a simple sequence of steps
	Algorithms: Expressed in pseudocode or English
	Coding the micro:bit using visual programming
	Part A: Measuring light level
	Algorithms: Expressed in pseudocode or English
	Coding the micro:bit using visual programming
	Coding the micro:bit using general-purpose programming (MicroPython)
	Adding an external sensor
	Connecting the micro:bit and the sensor board
	Algorithms: Expressed in pseudocode or English
	Coding the micro:bit using visual programming
	Coding the micro:bit using general-
	purpose programming (MicroPython)
	Part B: Measuring temperature
	Algorithms: Expressed in English or pseudocode
	Coding the micro:bit using visual programming
	Possible extension
	Part B: Measuring temperature
	Managing and interpreting the sensor data
	The black box approach
	Algorithms: Expressed in pseudocode
	Coding the micro:bit using visual programming
	The calibration approach
	Coding the micro:bit using general-purpose programming (MicroPython)
	Adding an alarm
	Algorithms: Expressed in pseudocode/English
	Coding the micro:bit using visual programming
	Coding the micro:bit using general-purpose programming (MicroPython)
	Note:
	Combining codes
	Coding the micro:bit using general-purpose programming (MicroPython)
	Creating some functions
	Note for Part C:
	Part C: Measuring sound level
	Connecting the sound (microphone) sensor
	Experimenting with the sound sensor
	Capturing the sound level data
	Using Show console Device
	Getting the sound sensor to alert when it is too loud
	Algorithms: Expressed in pseudocode/English
	Coding the micro:bit using visual programming
	Coding the micro:bit using general-purpose programming (MicroPython)
	Part D: Optional extension activities
	Carbon dioxide levels
	Air pressure
	Create a master monitoring device
	Example optional extension activity
	Carbon dioxide levels
	Connecting the boards
	Loading the gator:bit extension
	Coding the micro:bit
	Final things to remember

